16 research outputs found

    Encapsulation structure and dynamics in hypergraphs

    Get PDF
    Hypergraphs have emerged as a powerful modeling framework to represent systems with multiway interactions, that is systems where interactions may involve an arbitrary number of agents. Here we explore the properties of real-world hypergraphs, focusing on the encapsulation of their hyperedges, which is the extent that smaller hyperedges are subsets of larger hyperedges. Building on the concept of line graphs, our measures quantify the relations existing between hyperedges of different sizes and, as a byproduct, the compatibility of the data with a simplicial complex representationā€“whose encapsulation would be maximum. We then turn to the impact of the observed structural patterns on diffusive dynamics, focusing on a variant of threshold models, called encapsulation dynamics, and demonstrate that non-random patterns can accelerate the spreading in the system

    HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks

    Full text link
    The unsupervised detection of anomalies in time series data has important applications in user behavioral modeling, fraud detection, and cybersecurity. Anomaly detection has, in fact, been extensively studied in categorical sequences. However, we often have access to time series data that represent paths through networks. Examples include transaction sequences in financial networks, click streams of users in networks of cross-referenced documents, or travel itineraries in transportation networks. To reliably detect anomalies, we must account for the fact that such data contain a large number of independent observations of paths constrained by a graph topology. Moreover, the heterogeneity of real systems rules out frequency-based anomaly detection techniques, which do not account for highly skewed edge and degree statistics. To address this problem, we introduce HYPA, a novel framework for the unsupervised detection of anomalies in large corpora of variable-length temporal paths in a graph. HYPA provides an efficient analytical method to detect paths with anomalous frequencies that result from nodes being traversed in unexpected chronological order.Comment: 11 pages with 8 figures and supplementary material. To appear at SIAM Data Mining (SDM 2020

    A path-based approach to analyzing the global liner shipping network

    Get PDF
    The maritime shipping network is the backbone of global trade. Data about the movement of cargo through this network comes in various forms, from ship-level Automatic Identification System (AIS) data, to aggregated bilateral trade volume statistics. Multiple network representations of the shipping system can be derived from any one data source, each of which has advantages and disadvantages. In this work, we examine data in the form of liner shipping service routes, a list of walks through the port-to-port network aggregated from individual shipping companies by a large shipping logistics database. This data is inherently sequential, in that each route represents a sequence of ports called upon by a cargo ship. Previous work has analyzed this data without taking full advantage of the sequential information. Our contribution is to develop a path-based methodology for analyzing liner shipping service route data, computing navigational trajectories through the network that both respect the directional information in the shipping routes and minimize the number of cargo transfers between routes, a desirable property in industry practice. We compare these paths with those computed using other network representations of the same data, finding that our approach results in paths that are longer in terms of both network and nautical distance. We further use these trajectories to re-analyze the role of a previously-identified structural core through the network, as well as to define and analyze a measure of betweenness centrality for nodes and edges

    Adaptive Power Load Balancing in Cellular Networks

    Get PDF
    Load balancing in mobile cellular networks is an important mechanism that enables distribution of demand across neighboring cells, which is critical for better resource utilization and user satisfaction. Current approaches for load balancing are reactive, redistributing users only when the offered load approaches the cell capacity. This approach can lead to deteriorated network performance and user experience. In order to better cater to users, mobile networks need to be proactive and provision resources based on expected demand. To this end we propose a load balancing mechanism that allows for proactive network conļ¬guration based on prediction of traļ¬ƒc load. Our approach makes use of power control mechanisms to reconļ¬gure the coverage of a mobile base station and thus control the amount of users and oļ¬€ered load at that base station. We apply our method on a real-world cellular network in Senegal and show that it enables better distribution of load in Orange Telecomā€™s network in Senegal

    Detecting Path Anomalies in Time Series Data on Networks

    Full text link
    The unsupervised detection of anomalies in time series data has important applications, e.g., in user behavioural modelling, fraud detection, and cybersecurity. Anomaly detection has been extensively studied in categorical sequences, however we often have access to time series data that contain paths through networks. Examples include transaction sequences in financial networks, click streams of users in networks of cross-referenced documents, or travel itineraries in transportation networks. To reliably detect anomalies we must account for the fact that such data contain a large number of independent observations of short paths constrained by a graph topology. Moreover, the heterogeneity of real systems rules out frequency-based anomaly detection techniques, which do not account for highly skewed edge and degree statistics. To address this problem we introduce a novel framework for the unsupervised detection of anomalies in large corpora of variable-length temporal paths in a graph, which provides an efficient analytical method to detect paths with anomalous frequencies that result from nodes being traversed in unexpected chronological order

    The globally disseminated M1T1 clone of Group A streptococcus evades autophagy for intracellular replication

    Get PDF
    Autophagy is reported to be an important innate immune defense against the intracellular bacterial pathogen Group A Streptococcus (GAS). However, the GAS strains examined to date belong to serotypes infrequently associated with human disease. We find that the globally disseminated serotype M1T1 clone of GAS can evade autophagy and replicate efficiently in the cytosol of infected cells. Cytosolic M1T1 GAS (strain 5448), but not M6 GAS (strain JRS4), avoids ubiquitylation and recognition by the host autophagy marker LC3 and ubiquitin-LC3 adaptor proteins NDP52, p62, and NBR1. Expression of SpeB, a streptococcal cysteine protease, is critical for this process, as an isogenic M1T1 DspeB mutant is targeted to autophagy and attenuated for intracellular replication. SpeB degrades p62, NDP52, and NBR1 in vitro and within the host cell cytosol. These results uncover a proteolytic mechanism utilized by GAS to escape the host autophagy pathway that may underpin the success of the M1T1 clone

    Characterizing collective physical distancing in the U.S. during the first nine months of the COVID-19 pandemic.

    No full text
    The COVID-19 pandemic offers an unprecedented natural experiment providing insights into the emergence of collective behavioral changes of both exogenous (government mandated) and endogenous (spontaneous reaction to infection risks) origin. Here, we characterize collective physical distancing-mobility reductions, minimization of contacts, shortening of contact duration-in response to the COVID-19 pandemic in the pre-vaccine era by analyzing de-identified, privacy-preserving location data for a panel of over 5.5 million anonymized, opted-in U.S. devices. We define five indicators of users' mobility and proximity to investigate how the emerging collective behavior deviates from typical pre-pandemic patterns during the first nine months of the COVID-19 pandemic. We analyze both the dramatic changes due to the government mandated mitigation policies and the more spontaneous societal adaptation into a new (physically distanced) normal in the fall 2020. Using the indicators here defined we show that: a) during the COVID-19 pandemic, collective physical distancing displayed different phases and was heterogeneous across geographies, b) metropolitan areas displayed stronger reductions in mobility and contacts than rural areas; c) stronger reductions in commuting patterns are observed in geographical areas with a higher share of teleworkable jobs; d) commuting volumes during and after the lockdown period negatively correlate with unemployment rates; and e) increases in contact indicators correlate with future values of new deaths at a lag consistent with epidemiological parameters and surveillance reporting delays. In conclusion, this study demonstrates that the framework and indicators here presented can be used to analyze large-scale social distancing phenomena, paving the way for their use in future pandemics to analyze and monitor the effects of pandemic mitigation plans at the national and international levels
    corecore